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Abstract
A new mechanism of simultaneous appearance of ferromagnetism and
superconductivity based on interaction of electrons mediated by localized spins
was recently proposed by Suhl. Here the superconducting critical temperature
is calculated for this model and conditions for appearance of superconductivity
are analysed. It is shown that this mechanism can lead only to an s-wave
order parameter. Superconductivity appears together with ferromagnetism but
persists only until the ferromagnetism is weak. In order for it not to be destroyed
by the paramagnetic effect, the metal has to be of a heavy-fermion type. This
all fits recent experimental data obtained for UGe2.

1. Introduction

Recently a very strange phenomenon has been observed: superconductivity appearing
simultaneously with ferromagnetism (see [1, 2], and references therein). According to
conventional ideas, these two phenomena are incompatible, since, due to the paramagnetic
(Clogston) effect, the magnetization tends to flip the spins of the Cooper pair to make them
parallel to the magnetic induction. If the pairing is associated with exchange of quasiparticles
with a large momentum, like phonons in conventional superconductors, the interaction is
virtually local, and leads to an s pairing with a singlet order parameter. In order to have
triplet pairing, which could be compatible with ferromagnetism, the interaction has to be
sufficiently non-local. There is, however, also another concern. Until recently all the models
of superconductivity assumed that the quasiparticles mediating the Cooper pairing belong to
a system different from conduction electrons, e.g., phonons, magnons in a system of localized
spins, etc. The attempts to construct superconductivity within the same electron system as is
responsible for the ferromagnetism (see [3–5] and references therein) are not very convincing
and lead sometimes to predictions contradicting the experiment.

In this connection it is necessary to consider the experimental results more thoroughly.
The F–SC combination was first observed in UGe2 under pressure [1, 6, 7]. There are some
characteristic features of this material and of the experimental results. First of all, the magnetic
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moment of uranium is due to f shells, and, therefore, it can be considered as localized. The
experiments on high-purity single crystals and on polycrystals give essentially the same results,
and this is irrefutable evidence that the pairing is in the s state—the only one not destroyed by
scattering from potential impurities. In contrast to that, the material ZrZn2, where also the F–SC
combination was recently observed [2], has much less localized d electrons. Superconductivity
is observed only in extremely pure samples, and a rather weak disorder destroys it completely.
Therefore, it is very likely that there is a p-wave pairing, and it is described by one of the
models of [3–5]. The overall conclusion is that one should not try to squeeze everything into
one particular mechanism, as has happened in the past with the so-called ‘unconventional’
superconductors, such as organics, bucky-balls, high-Tc superconductors, etc.

I will further concentrate on UGe2. A very interesting concept of superconductivity in this
substance was proposed recently by Suhl [8], who suggested that an s-wave superconductivity
could result from the interaction of electrons mediated by ferromagnetically ordered localized
spins. In [8] a Cooper-type derivation was performed with somewhat obscure calculations,
which gave only a hint at the possibility of superconductivity, just like Cooper’s original
paper [9]. Therefore, I felt it worthwhile to perform a rather standard type of calculation of the
critical temperature within the model [8], taking into account not a single localized spin but the
whole ensemble, and, also, not a single pair but the whole electron system. This calculation
confirmed Suhl’s idea, and it will be presented in the following sections together with some
analysis.

2. Critical temperature

I will use the simplest model of an interaction of electrons with localized spins:

J
∑
n

σ(rn)Sn. (1)

The electron spin density will be described by the usual operators:

σ i(r) =
∑
α,β

ψ+
α (r)σ

i
αβψβ(r) (2)

(σ iαβ are the Pauli matrices), and the localized spins by the ‘pseudo-fermions’ [10, 11]:

Sin =
S∑

M,M ′=−S
a+
nMSMM ′anM ′ . (3)

Since the papers [10,11] are not easily accessible, I will mention here that if the operators anM
have the usual fermion commutation relations, and SiMM ′ are the spin matrices, the operators,
Sin, will have the necessary commutation relations for spin operators. Such a presentation
introduces, however, in addition to ‘physical’ states, where only one state is occupied (one
of the numbers nM = 1, and the others are 0), some ‘unphysical’ states, where several of
the occupation numbers are non-zero, or all are zero. They can be excluded by the following
procedure. First of all, any operator Sin, or a product of several such operators, gives zero,
acting on the state with no ‘particles’ in any of the M-states. The states with two, or more,
‘particles’ can be excluded by introduction of a large ‘energy’ λ per ‘particle’, i.e., adding to
the Hamiltonian the term

λ

S∑
M=−S

nM.

If λ → 0, the ‘many-particle terms’ will be smaller than the ‘physical’ terms. In order to get the
correct average, one has to multiply the result by the factor eλ/T /(2S +1), or, in the presence of
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Figure 1. Ladder diagrams to be summed for the definition of Tc . The thick lines correspond
to electron Green functions, the thin lines to Green functions of pseudo-fermions; the vertices
correspond to the interaction of electrons with localized spins (formula (1)).

a magnetic field, by eλ/T sinh(H/2T )/ sinh[H(S + 1/2)/T ], per participating localized spin
(here H is the equivalent of µH ).

According to what was said before, the Hamiltonian is

H = J
∑
n

S∑
M,M ′=−S

∑
α,β

a+
n,MSMM ′an,M ′ψ+

α (Rn)σαβψβ(Rn)−H
∑
n

S∑
M=−S

∑
α,β

a+
n,MMan,M

− h

∫
dV

∑
α,β

ψ+
α (r)σ

z
αβψβ(r) + λ

∑
n

S∑
M=−S

a+
n,Man,M (4)

where it was supposed that ‘exchange fields’ h and H are acting on electrons and localized
spins (their origin will be discussed in the next section). Following the general rule (see [10],
section 33, subsection 3), it is necessary to find the pole of the sum of the ladder diagrams
shown in figure 1 with zero total incoming frequency and momentum, where the thin lines
stand for pseudo-fermions. Every ‘step’ of the ladder is equal either to

J 2
∑
n

S∑
M=−S

M2T
∑
ω

(iω + MH − λ)−1[i(ω + �) + MH − λ]−1 (5)

with no change of the electron spin, or to

+ J 2
∑
n

S∑
M=−S

(S −M + 1)(S + M)T
∑
ω

(iω + MH − λ)−1[i(ω + �) + (M − 1)H − λ]−1

(6)

with the electron spin changing from 1/2 to −1/2 in the upper line and inversely in the lower
line, or vice versa. Here ω = π(2n + 1), � = 2πm. It is easy to see that the sum over ω in (5)
is finite only for� = 0, and that it does not lead to a logarithmically large quantity, since there
is no summation over electron frequencies. In (6) we get a finite result for a finite �.

Performing the summation over ω and M for a given n, multiplying by
eλ/T sinh(H/2T )/ sinh[H(S + 1/2)/T ], and putting λ → ∞, we obtain

2J 2SBS(H/T )(i� + H)−1. (7)

Here BS(H/T ) is the Brillouin function

BS(H/T ) = S + 1/2

S
coth[(S + 1/2)H/T ] − 1

2S
coth[H/(2T )]. (8)

The localized spins in every step must be different, since otherwise every loop will give a factor
exp(−λ/T ) and there will be only one compensating factor exp(λ/T ). Since at T → Tc the
coherence length becomes infinite, the absence of some spins from the whole sum makes no
difference. The summation over the localized spins can be therefore replaced by a volume
integration:

∑
n → N

∫
dV , where N is the density of localized spins.
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In order to get a non-vanishing result, the electrons between the steps must be supposed
to have different polarizations, and, hence, the superconducting ordering under consideration
has to be singlet. The product of the electron Green functions is

[i(ω −�) + h− ξ ]−1[−i(ω −�)− h− ξ ]−1.

The main logarithm appears if h � H , and is the result of an integration over ξ and summation
over ω′ = ω − � in the region h � ω′ � H . Therefore in the factor (i� + H)−1 we can
neglect �, and what remains is

νT

H

∑
|ω′|�H

∫
dξ

[
ξ 2 + (ω′ − ih)2

]−1

where ν is the density of states:

ν = p0m

2π2
. (9)

Integration with respect to ξ results in
νπ

H

∑
0<ω′<H

[
(ω′ − ih)−1 + (ω′ + ih)−1

]
.

After some simple transformations we obtain

ν

H

[
ln

2γH

πT
+ ψ

(
1

2

)
− 1

2
ψ

(
1

2
− ih

2πT

)
− 1

2
ψ

(
1

2
+

ih

2πT

)]

where ψ is the digamma function.
Summation of the whole ladder gives

# = 2J 2NS[BS(H/T )/H ]

{
1 − 2J 2NνS[BS(H/T )/H ]

×
[

ln
2γH

πT
+ ψ

(
1

2

)
− 1

2
ψ

(
1

2
− ih

2πT

)
− 1

2
ψ

(
1

2
+

ih

2πT

)] }
. (10)

This expression has a pole, which defines the critical temperature as a function of H and h. In
order to understand more clearly the limiting cases, we use the integral form of the digamma
function:

ψ(z) =
∫ ∞

0

(
e−t

t
− e−zt

1 − e−t

)
dt. (11)

The equation for Tc transforms to

2J 2NνS[BS(H/Tc)/H ]

(
ln

2γH

πTc
−

∫ ∞

0

1 − cos(hz/πTc)

sinh z
dz

)
= 1 (12)

where γ = eC 	 1.78. For the case h = 0 we get

2J 2NνS[BS(H/Tc)/H ] ln
2γH

πTc
= 1. (13)

Since, strictly speaking, our derivation is valid only for Tc � H , we can substitute
BS(H/Tc) 	 1 and get

Tc 	 2γH

π
exp

(
− H

2J 2NνS

)
. (14)

If we try to extrapolate to Tc ∼ H , the square bracket in (13) will not depend onH , and we can
conclude that in this region Tc grows linearly with H . After a maximum at H = J 2NνS/2, it
decreases with H . This shows that without the exchange field there is no new mechanism for
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superconductivity. At the same time H must not be too large; otherwise, superconductivity
will be suppressed. This fits the experimental data qualitatively [1].

In contrast to the exchange field acting on the localized spins, the field acting on the
electrons has a negative effect. Returning to formula (12), we obtain for h � Tc

Tc 	 Tc0 − 7ζ(3)

4π2

h2

Tc0
(15)

where Tc0 is the value given by formula (14). In the opposite limiting case, h � Tc0, the
integral in (12) is equal to ln(2γ h/πTc) and we get the formula

1
2J

2NνS[BS(H/Tc)/H ] ln(H/h) = 1. (16)

It is easy to see that if h exceeds Tc0, this equation has no solutions.

3. Exchange fields

Until now we have treated the exchange fields, H and h, as some given quantities, and did not
consider their origin. The conclusion that we have reached is that superconductivity mediated
by local moments can exist only if H > Tc > h. The question that arises is: is this possible?
The exchange fieldH can appear as a result of the interaction of the localized spins with the spins
of electrons (1) but it can also have another origin, such as direct exchange or superexchange.
Independently of this, the maximum possible critical temperature Tc,max ∼ J 2NνS. On the
other hand, it is hard to imagine any source of h not associated with localized spins. Therefore

h = JNSBS(H/T )

and, at H > Tc, h ∼ JNS. Since this has to be less than Tc, we get the following condition:

Jν � 1. (17)

This condition was also obtained in [8]. Since the exchange energy is always somewhat less
than the main electronic energies, the only possibility is a large density of states, ν. According
to formula (9), this can happen only for a large effective mass, i.e., if the substance is a heavy-
fermion metal. This agrees with the estimate in [1] based on the results for the resistivity and
specific heat, namely, m ∼ 50me.

I would like to express my gratitude to Professor Harry Suhl for valuable and inspiring
discussions. This work was supported by the Department of Energy under the contract
no W-31-109-ENG-38.
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